Obsidians ExploraTalk - June 18, 2013

Hiking Astronomy

Using and Enjoying the Sun, Moon, Planets and Stars

John Hartman

softwareunderstanding.com/hiking-astronomy

Topics

1. Day – Hiking With the Sun

Time, Direction, Altitude

Sunset – when and where

Sun Position Science - time, position for day, year

2. Evening

Twilight Length

Moon - moonlight, phase, position, illusions

Planets and Bright Stars

3. Night

Finding Things In The Sky Eyes, Binoculars and Small Telescopes Fun Objects – satellites, moon, planets, stars, clusters, galaxies, nebulae... Supplemental Slides Follow Conclusion Slide:

Combined Alt Az Plots for Each Season

Analemma Details

Sun Shadow Tracing

Survival Direction Finding

Hiking With the Sun

Solar Time('s) Hiking System

1.Time – organize day

2.Direction – stay oriented

3.Sun Altitude – how intense?

What Time Is It?

Solar Time

Time = Sun Time Is Local

Clock Time

Time ≠ Sun Time Not Local

3 Artificial Additives

Organize Hiking Day

Middle of Day?

Today Sunrise Sunset

June 16

Hours of Daylight?

	U.S EUG	. Na ENE,	val Obse OREGON	ervatory	
Sun & moon Friday	Azi Jun	muth 20,	of the 2013	Sun	
5:29 a.m. Sunrise	h	m	o	näh	Solstice
	05:	31	56		Hours in morning,
June 23 June 29 July 8	06:	14	63		afternoon?
z hon z the s	07:	14	13		ancinooni
	08:	14 17	02 02		
	109.	14 14	92 104		
	11.	14	120		
	12:	14	144		
	13:	14	180		15 hr 26 min
	14:	14	216		
	15:	14	240		
	16:	14	256		
	17:	14	268		
	18:	14	278		
	19:	14	287		
	20:	14	297		
	20:	57	304		
	12:	00	138		

Difficult With Clock Time

Organize Day With Solar Time

Reset watch to solar time for multi-day hikes

Solar Noon

Middle of day Sun is due south Highest

12 PM Solar Time

Clock Time	-01:14	<u>Solar</u> <u>Time</u>	Sun Azimuth
5:31 AM		04:17 AM	
6:14 AM		5 AM	· · ·
7:14 AM		6 AM	· · ·
8:14 AM	Adjust tab	l <mark>e column</mark> M	
9:14 AM		8 AM	
10:14 AM		9 AM	
11:14 AM		10 AM	
12:14 M		11 AM .	
1:14 PM		<u>12:00 PM</u>	180
2:14 PM		1 PM	
3:14 PM	·	2 PM	· · ·
4:14 PM		3 PM	
5:14 PM		4 PM	
6:14 PM		5 PM	
7:14 PM	· · · · ·	6 PM	
8:14 PM		7 PM	

Sunrise, sunset symmetrical, easy to remember

7 hr 43 min before noon

Lunch break at true mid-day

7 hr 43 min after noon

Direction

Constant Situational Awareness

Compass In The Sky

Clock	01.14	<u>Solar</u>	Sun	Azimuth	
Time	-01:14	<u>Time</u>	Azimuth	Change	
5:31 AM		04:17 AM		· · ·	
				7	_
6:14 AM		5 AM			
7.14 434		6 4 3 4		10	-
/:14 AM		6 AM		10	-
8·14 AM		$7 \Delta M$		10	
0.147101		/ 23101		10	
9·14 AM		8 A M			
2.147.141		UAN		10	
10.14 AM		0.4 M			
10:14 AM		9 AM			
11 14 435		10 435		16	
11:14 AM		10 AM			
				24	
12:14 PM		11 AM			
				36	
1:14 PM		<u>12:00 PM</u>	180		
2:14 PM		1 PM			-
2.14 DM		2.75.6			-
3:14 PM		2 PM			-
4.14 PM		3 PM			
4.14 111					_
5:14 PM		4 PM			-
					-
6:14 PM		5 PM			-
				· · · · ·	
$7:14 \ \mathrm{PM}$		6 PM			
8:14 PM		7 PM			
0 (7 7) (· ·	
8:37 PM		U7:43 PM			

Remember Five Magic Numbers

	PATZH	DISEL	ALF	ey C	A
Por	SUAR	- AZ	5	HAYOW	AL
5-44	5	66	4 2	46	0
6:42	4	24	a 2	54	11,
7:42	.7	6 1 -	2	61	23
8:42	>8	89	0 2	694	- 35
1:42	9	98	2 2	78	48
10:42	10	110	2 2	90	40
11:42	11	133	3	13	7/
12:42	>12	150	L)	04	76
1-42	Tr.	227	#7 1	17	ל ורי
2:42	2	250	23 5	10 0	46 7
3:42	3	262	128	21	48 .
4:42	74	271	9 9	16	35 ,
5:42	5	279	29	9 1	23
6:44	6	287	\$ 10	7 1	1
D:42	7	295	115	<u> </u>	υ''

Clock		<u>Solar</u>	Sun	Azimuth	
Time	-01:14	Time	Azinluth	Change	
5:31 AM		04:17 AM	56 -		
				7	
6:14 AM		5 AM	63		
				10	
7:14 AM		6 AM	.73 .		
				10	
$8:14 \mathrm{AM}$		7 AM	82		
				10	
$9:14 \mathrm{AM}$		8 AM .	.92		
				12	
10:14 AM		9 AM	104	\frown	
				16	
11:14 AM		$10\mathrm{AM}$	120		Ň
				24	
12:14 PM		11 AM	144		
				36	
1:14 PM		<u>12:00 PM</u>	180		
				36	
2:14 PM		1 PM	216		
				24	
3:14 PM		2 PM	240		
				16	
4:14 PM		3 PM	256		
				12	
5:14 PM		4 PM	268		
				10	
6:14 PM		5 PM	278		
				10	
7:14 PM		6 PM	287		
				10	
8:14 PM		7 PM	297		
-				7	
8.57 PM		07·43 PM	304		

Subtract and Add Changes To Get Azimuths

Azimuth Changes Fastest, In Few Hours Before/After Noon

Clock Time	-01:14	<u>Solar</u> <u>Time</u>	Sun Azimuth	Azimuth Change	Shadow Azimuth
5:31:AM		04:17 AM	56		· ·
				7	
6:14 AM		5 AM	63		243
				10	
7:14 AM		6 AM	-73 -		253
				10	
8:14 AM		7 AM -	82		262
				10	
9:14 AM		8 AM -	.92		272
				12	
10:14 AM		9 AM	104		284
				16	
11:14 AM		10 AM	120		300
				24	
12:14 PM		11 AM	144		324
				36	
1:14 PM		<u>12:00 PM</u>	180		360
				36	
2:14 PM		$1 \mathrm{PM}$	216		36
				24	
3:14 PM		2 PM	240		60
				16	
4:14 PM		3 PM	256		76
				12	
5:14 PM		4 PM	268		88
				10	
6:14 PM		5 PM	278		98
				10	
7:14 PM		6 PM	28 7		108
				10	
8:14 PM		$7 \mathrm{PM}$	297		117
				7	
8:57 PM		07:43 PM	304		

Shadow Gives Compass On The Ground

Seasonal Differences - Azimuth

	<u>Summer</u>	r <mark>Solstice</mark>	<u>Equi</u>	noxes	Winter	<u>Solstice</u>
<u>Solar Time</u>	Sun Azimuth	Azimuth Change	Sun Azimuth	Azimuth Change	Sun Azimuth	Azimuth Change
5 AM	63				· · · ·	· · ·
	0.5	10				
6 AM	73		90			
		10		11		
• 7 AM •	82	·	101		· · ·	
		10		11		
8 AM	92		112		127	
		12		13		12
9 AM	104		125		139	
		16		15		. 12
$10\mathrm{AM}$	120		140		151	
		24		19		· 14 ·
11 AM	144		159		165	
		36		21		15
12:00 PM	180		180		180	
		36		21		15
$1 \mathrm{PM}$	216		201		195	
· · ·		24		19		14
2 PM	240		220		209	
	25.6	16		15		12
3 PM	256	. 10	235	12	221	1.2
4 PM	268	12	248	15	233	12
		10		11	233	· · · ·
5 PM	278	••	259	**		
		10		11		
6 PM	28 7		270			
· · ·		10				
$7 \mathrm{PM}$	297					

Different At Different Latitudes!

Sun Altitude With Solar Time

Clock		<u>Solar</u>	Sun	Altitude	
Time	-01:14	Time	Altitude	Change	
5:31 AM		04:17 AM	- O - V	· · ·	
				б	
6:14 AM		5 AM	. 6 .		
7.14 AM		6 A M	16	10	
7.14 AW		UAN	10	10	
8:14 AM		7 AM	.27		
				10	
$9:14~\mathrm{AM}$		8 AM .	.37 .		
				10	
10:14 AM		9 AM	.48 .		
11 14 434		10 435	50	10	
11:14 AM		IUAM	.58 .	· · ·	
10 14 53 5				6	
12:14 PM		11 AM	66		
		10.00 77.5		3	
1:14 PM		<u>12:00 PM</u>	<u>69</u> –		
2.14 DM		1 DM	66	.3	
2:14 PM		1 PIM	00	6	
3:14 PM		2 PM	58		
				10	
$4:14 \ \mathrm{PM}$		3 PM	48		
				10	
5:14 PM		4 PM	37	10	
6.14 DM		5 DM	27	10	
0.14 PM		5 F IVI	27	10	
7:14 PM		6 PM	16		
				10	
$8:14 \ \mathrm{PM}$		$7 \mathrm{PM}$	6		
				6	
8.57 PM		107.43 PM	1 0		

Most Intense, Changes Slowest, In Few Hours Before/After Noon

Remember Changes, Peak/Noon Altitude

Changes ~ 10 deg/hour In Morning/Evening

Seasonal Differences - Altitude

		<u>Summe</u> i	r I	<u>Solstice</u>		<u>Equinoxes</u>				Winter Solstice		
<u>Solar Time</u>		Sun Altitude		Altitude Change		Sun Altitude		Altitude Change		Sun Altitude	A	ltitude hange
elect table row												
3 AM		6		10								-
6 4 10		16		10		0	_					
PAN		10		10		0		10				
7 AM -		2.7				11						
/ 1 11/1		- /		10				10				
8 AM		37	•	- - -	-	21		- -		3	-	
				10			-	10		-	┢	8
9 AM		48		10		31	-	10		11	┢	•
		40		10	_	51	_	0		11	╞	_
10 435		50		10			_	ð		17	-	0
10 AM		28				39				17	╞	
	•		•	6				5			Ľ	4
11 AM		66				44				21		
· · ·				3	1			2				2
<u>12:00 PM</u>		69				46				23	L	
				3				2				2
1 PM		66				44				21		
	-			6		2.0		5				4
2 PM		58		10		39		0		17		6
2 DM		40		10		21		8		11		6
5 P W		40		10		51		10		11		0
4 PM		37		10		21		10		3		0
				10				10				
5 PM		27		••		11		- ·				
				10				10				
6 PM		16				0						
				10								
$7 \mathrm{PM}$		6										

Different At Different Latitudes!

LOST ASTC LEASTER

Time To Sunset Using Sun's Altitude

Altitude is 4 deg 4 little finger widths, 8 sun diameters

If Altitude Change Is 10 deg/hour, 6 minutes/deg

> Sun Will Set In 24 Minutes

Time To Sunset Using Sun's Path

Noon Altitude

70 deg Summer Solstice

46 deg Equinoxes

> 23 deg Winter Solstice

> > S

Solstice Sunrise and Sunset Azimuth

Solstice Sunrise and Sunset Azimuth

General Sunrise and Sunset Azimuth

Day Marks

Solstices Slows To Standstill

Equinoxes Rises/Sets Due East Changes Fastest

Use Sun Azimuth Between Solstices and Equinoxes

Amplitude 68 deg at Eugene Increases With Latitude

Solar Time For Different Days, Longitudes

Remove Artificial Additives

Solar Time 12PM

Standard Time

 \checkmark

Local Time

Longitude 4 minutes/deg W of zone meridian 4 x (123-120)

True Sun Daily Variation

Ahead/Behind Mean Sun As Much As 15 min <u>Equation Of Time</u> Orbit Non-Circular and Tilted

Sun Demonstration

I ran Sun Motions Simulator

astro.unl.edu/classaction/animations/coordsmotion/sunmotions.html

For Eugene, latitude 44 deg N:

Showed sun's path in sky for different seasons (*loop day* animation, date slider)

Showed true sun early and late at local mean noon for different seasons, then analemma (*step by day* animation)

Analemma Examples

Analemma

Sun at given clock time for a year

Points, analemmas at time intervals tell time (knowing season)

Declination on a Meridian x Eqn of Time

Content and the second seco

pikespeakphoto.com/analemma.html

Equation of Time causes sun to move later overcoming declination change

Earliest Sunrise - June 15 Latest Sunset - June 26

Other Daylight Observations

The nature of LIGHT & COLOUR in the open air

M. Minnaert

mirages, haloes, shadows, double rainbows... hundreds of other phenomena visible with the naked eye ...explained by a famous physicist

Green Flash, Rainbows, Mirages, Judging Angles...

Chapter				Page
I. SUNLIGHT AND SHADOWS	٠	•	•	I
II. REFLECTION OF LIGHT	•	•	•	8
III. REFRACTION OF LIGHT	•			31
IV. THE CURVATURE OF LIGHT RAYS IN THE ATMO	SPHER	æ.		39
v. Intensity and Brightness of Light .				74
vi. The Eye				90
VII. COLOURS	•			108
VIII. AFTER-IMAGES AND CONTRAST PHENOMENA	•	•	•	114
ix. Judging Shape and Motion	•	•	•	140
x. RAINBOWS, HALOES AND CORONAE	•	•	•	167
XI. LIGHT AND COLOUR OF THE SKY	•	•	•	235
XII. LIGHT AND COLOUR IN THE LANDSCAPE .	•	•		298
XIII. LUMINOUS PLANTS, ANIMALS AND STONES .	•	•		347
Index	•	•		357

Twilight Length

Moonlight Illumination – Phase and Altitude

Brightest In Few Days Around Full Moon

Moonlight, Moon Rise/Set

Illumination/Altitude Depends On Phase and Season

Summer Solstice

Moonlight, Moon Rise/Set

Fall Equinox

Winter Solstice

Spring Equinox

First Quarter Moon Will Be Where Sun Will Be In ~ 3 Months Full Moon Will Be Where Sun Will Be In ~ 6 Months, Opposite Sun

Third Quarter Moon Will Be Where Sun Will Be In ~ 9 Months

Moon Illusion

Moon Appears Huge When Close To Horizon

However, It Is Always ½ deg

Moon Illusion

Moon Appears Huge When Close To Horizon

However, It Is Always ½ deg

Can Confirm With Finger Measurement

Moon Illusion

Moon Appears Huge When Close To Horizon

However, It Is Always ½ deg

Can Confirm With Finger Measurement

Same With Sun, Constellations, And Other Objects

Moon Tilt Illusion

Appearance

Doesn't Match Physics

Moon Tilt Illusion

Appearance

Doesn't Match Physics

Stretch String

To See Actual Alignment

Locates Ecliptic

Planets and Bright Stars

Abrams Sky Calendar (or Software)

Start With Brightest Objects

Locate Saturn and Spica

Using Moon

www.pa.msu.edu/abrams/SkyCalendar/ \$11/year

Night

Night

VIRGO

Coma Star Cluster Berenice's Hair

The planets Mercury, Venus, and Saturn are plotted for mid-June 2013. At chart time 12 objects of first magnitude or brighter are visible. In order of brightness they are: Venus, Arcturus, Vega, Capella, Saturn, Mercury, Altair, Antares, Spica, Pollux, Deneb, and Regulus.

Our usual monthly maps are designed for stargazers just beginning to find their way around the sky. This month's map is useful for serious stargazing from dark locations. It contains many more stars, inclusive to magnitude 4.5 and some fainter stars as needed to complete patterns or assist in locating special objects. A selection of double stars (labeled with Greek letters) and "deep sky objects" is also plotted. All are visible with modest equipment; most are within the range of the unaided eye or binoculars.

ENTAURUS

Saturn

IBR/

The double stars, in order of decreasing angular separation, are ω Sco, ζ UMa, δ Lyr, μ Sco, σ Cyg, α Lib, ϵ Lyr, ν Dra, ζ Lyr, β Cyg.

The star δ in Cepheus is a naked-eye pulsating variable. It varies between magnitudes 3.5 and 4.4 every 5.4 days.

HYDRA

Two open or galactic clusters are noted. The Coma Cluster is a loose group of named-eye stars below the handle of the Big Dipper. The Beehive or Praesepe in Cancer is much more compact, resembling a hazy patch of light.

The Hercules Cluster appears still more compact. It is a fine example of a globular cluster, a dense concentration of about a million stars.

Double Stars

	Eyes	Binoculars	Small Telescopes
Power	1x	8x	20-60x
Apparent Field	Huge	~ 50 deg	~ 50 deg
True Field	Same	• ~ 6 deg	2.5 - < 1 deg
Aperture	4mm x 2	40 mm x 2	70 mm
Light	1	100	150
Abrar	ns/	Tirion	Pocket
Planisp	here	Bright Star Atlas	Sky Atlas

Coma Berenices Star Cluster

EyesBinocularsSmall Telescopes

Fun Objects

Satellites After sunset. ID with software. Flares

Moon Phases, position, libration, Earthshine. Craters and mountains on terminator

Planets Movement. Jupiter's moons. Venus, Mercury phases. Saturn rings. Asteroids

Meteors Sporadic and showers. Best after midnight

Comets Catch when you can!

Fun Objects

Stars Color. Asterisms. Multiple stars, Mizar/Alcor, e Lyrae – double double, Albireo... Variables. Supernovae...

Open Clusters - Coma, Plieades, Beehive, M6, M7, double cluster...

Fun Objects

Globular Clusters M13...

Galaxies <u>Milky Way.</u> M31 – Andromeda Galaxy...

Nebulae Orion Nebula – M42, Ring Nebula – M57...

Summary

- Solar Time
- Direction From Sun; Sun Altitude
- Sunset
- Sun Movement and Analemma
- Twilight
- Moonlight and Moon Illusions
- Bright Stars and Planets
- Astronomy With Eyes, Binoculars, Small Telescopes

Supplemental Slides Follow Conclusion Slide:

Combined Alt Az Plots for Each Season

Analemma Details

Sun Shadow Tracing

Survival Direction Finding

Conclusion

softwareunderstanding.com/hiking-astronomy

Daily Movement

3/20 And 0 11 11 11 11 22 11 33 6 41 6 12/21 Image: Image	9 10 11 12	9		8		7		6		5	Solar time
3/20 All 0 11 11 11 11 22 11 33 6 41 6 12/21 Image: Constraint of the state of the	<i>11</i> 139 <i>13</i> 151 <i>14</i> 165 <i>15</i> 180	139	11	127							12/21
3/20 All 0 11 11 11 11 22 11 33 6 41 6 12/21 Image: Constraint of the state of the	12 123 16 139 19 158 22 180	123	12	111	11	100	10	90			3/20 Az
3/20 Alt 0 11 11 11 11 22 11 33 6 41 6 12/21 3 8 11 6 17 4	12 104 16 120 24 144 36 180	104	12	92	10	82	10	73	10	63	6/20
3/20 All 0 11 11 11 11 22 11 33 0 41 0	8 11 6 17 4 21 2 23	11	8	3							12/21
	<i>11</i> 33 8 41 6 47 2 49	33	11	22	11	11	11	0			3/20 Alt
6/20 6 10 16 11 27 11 37 11 48 10 58 8	11 48 10 58 8 66 3 69	48	11	37	11	27	11	16	10	6	6/20

The Analemma

Sun at given clock time for a year

www.analemma.com

Shadow Stick Astronomy

Mark time Trace path Measure altitude and azimuth Find Location

Sun Traces Declination Lines

Equinoxes

Primitive Direction Finding

Watch Method

Two Point Method

- watch gives solar time
- •azimuth of 15 deg/hour

