Sun Position Fun

Observing and understanding the sun's position and movement, indoors and outdoors, day and night

John Hartman

softwareunderstanding.com/sun

A Brief History of Telling Time and Sun Consciousness

A Brief History of Telling Time and Sun Consciousness

Time $=$ Sun

A Brief History of Telling Time and Sun Consciousness

A Brief History of Telling Time and Sun Consciousness

Time \neq Sun

A Brief History of Telling Time and Sun Consciousness

App: Augmented reality camera showing sun's path

Sun Consciousness
 Observe and Understand

Minnaert, The Nature of Light and Colour in the Open Air

Position and Movement - day, seasons, year

Topics

1. Background
2. Observing Methods and Examples
3. Solar Time
4. Daily Movement
5. Altitude/Azimuth and Astrolabe
6. Finding Direction and Location
7. The Analemma
8. Sundials
9. Sun At Night
10.Public Sun Instruments and Art

Background

Celestial Sphere Cut by Ecliptic, Unwrapped

Observing Methods

- Estimate
- Sight
- Project
- Reflect
- Photograph
- Instruments
- Telescope mount setting circles

Body measures, fraction of zenith
Azimuth
Landscape, gunsights, slots, tubes
Shadows, gnomon, spheres
Mirrors
Lenses
Fiber Optics
Film, CCD, motion
Measurements

Indoor Observing

Mirror, Shadow, Lens, Pinhole...

Estimate Time To Sunset

Sights

Mark a given position of the sun - time and day(s)
Example: Solstice sunrise and sunset - Standstill

Project 1: Sun Sight

Make a sight to mark days, times, seasons...

Date range - horizon rise/set or declination point/slot
Time range - hour angle point/slot
Gun sights, tubes, shadows, masks, lenses, mirrors, fiber optics...

Sun Sight Examples

Day Marks - horizon or declination

Event - time and day, ha x dec

- resolution
- $2 \times$ except solstices

Period- solar time/hour angle range
(x) Season pair - declination range

Solar Day

Equation of Time

Difference Between True Sun and Mean Sun

True sun ahead

True sun behind

Accumulated
difference between
apparent and mean
solar day
From orbital tilt, varying speed

Feb 15: -14:07*
Feb 14: -14:10*

True sun moved $3 \mathrm{sec} \mathbf{W}$ relative to mean sun (catching up)

Solar Time and Noon

Clock
 Time

(+ Daylight Savings Time)

Mean time at zone meridian 120 W

Set Watch

Solar Time and Noon

Clock Time		(Local) Mean Solar
	Longitude Correction	Time

Solar Time and Noon

Clock
Time

Mean time at zone meridian 120 W
(Local)
Mean
Solar
Time

Equation
Of Time
Correction

$-14: 07$
on Feb 15

True Solar Time 12:00

Mean time at Eugene 123 W

Solar Time at Eugene on Feb 15

Sun, Sundials
Set Planisphere*
Sun on Planisphere

2. Noon Mark and Solar Time

-Make a Noon Mark

Sight that marks solar noon

- sun due S and highest, ha=0
-Set a clock to solar time

How often do you have to adjust?

And/or local mean time

Noon Mark Examples

Shadow (vs. N/S slot)

Pinhole

+ days (dec)

What does analemma do?

Daily Movement

Altitude/Azimuth and Astrolabe

Early Science
-Celestial system - RA/ha, dec
-Horizon System - alt, az
Conversion
Models like armillary sphere, projections, analog computers, Spherical trigonometry, celestial navigation tables...

Astrolabe (Planispheric)
-More complete and accurate model than planisphere
-Latitude specific plate
-Many calculations
-Historical variations

Modern Astrolabe

Altair

$$
\begin{aligned}
& \text { Az }=117 \\
& \text { Alt }=37
\end{aligned}
$$

Solar time 6:47 (+12 Ing +14 eqtim = 7:13 clock)

Look down on celestial sphere

James Morrison, astrolabes.org

Sun Traces Declination Lines

Summer

Shadow of point traces hyperbola* for each

Winter

Primitive Direction Finding

Watch Method

Two Point Method

Assumes
-watch gives solar time
\cdot •azimuth of $15 \mathrm{deg} / \mathrm{hour}$
When do pairs of points show E-W?

with tables/charts

Sun Compasses

Diagram of Burt's Solar Compass "as improved by W. \& L.E. Gurley" of Troy, New York in 1850, fourteen years after Burt first patented it (Image from pamplet in WHS Museum accession file 1962.60)

Burt Solar Compass

-surveyed Willamette Meridian, townships \rightarrow your property
-like aligning equatorial mount

Atwood, Chaining Oregon

Location Using Noon Altitude

$$
=(20 h 26 m-12 h)-14 m
$$

$$
=8 \mathrm{~h} 12 \mathrm{~m}=492 \mathrm{~m}
$$

$$
x \operatorname{deg} / 4 m=123 \operatorname{deg} W
$$

Time of greatest
altitude, shortest

$$
\begin{aligned}
\text { Latitude } & =90-\text { alt }- \text { dec } \\
& =90-33-(-13) \\
& =44 \operatorname{deg} \mathrm{~N}
\end{aligned}
$$

Precision
Longitude: 13 miles/min
Latitude: 69 miles/degree

Location Using Sunlight

Antarctic bird tracking log sunrise and sunset

Sunset time and night length give location

Problems?

3. Shadow Stick Astronomy

Mark time
Trace path
Measure altitude and azimuth
Find Location

The Analemma

Sun at given clock time for a year

Earliest Sunset

~ Dec. 7, not solstice

Equation of Time causes sun to move later overcoming declination change

Similar for earliest/latest rise/set

Analemma Examples

4. Make an Analemma

Sun at given clock time for a year

Points, analemmas at time intervals tell time
(knowing season)

Design and/or record data: dec on a meridian x eqn of time

Sundials

Point uses azimuth

[^0]Gnomon uses hour angle

sundialsoc.org.uk

Local Sundials

Plaza between Deschutes Hall and Huestis Hall

UO prototypes, analemmas \mathbf{N} side of Lillis Hall

Seattle, Puget Sound Sundial Trails

5. Make a Sundial

Similar to telescope making

Creative scope

Mirrors, lenses?

Sun, Moon and Ecliptic

Moon Tilt Illusion

Observed?
vs. stretched string
Minnaert

Night

Visualize
 Position and Movement

Hour angle of moon from sundial
Sun and anti-sun

Moondials

Correct for age of moon
Ecliptic using
-Moon, planets
-Future sun - set, transit, rise

Sun - moon line

Public Sun Instruments and Art

Sun + instrument, art, architecture...

analemma

NYC: McGraw-Hill Building Plaza Sun Triangle
The Sun Triangle, designed by meteorologist and oceanographer Athelstan Spilhaus, was installed in inside the sunken plaza outside the McGraw-Hill Building, located at 1221 Avenue of the Americas, in 1973. The outtine of the 50 -foot stainless steel triangle points too a seasonal position of the sun at solar noon in New York City. The shortest bottom side points to the sun's lowest noon position on the winter solstice, an alititude of 26°, on December 21 ; the steepest side points to the sun's highest position on the summer solstice, an altitude of 73°, at $1: 00 \mathrm{pm}$ (noon if it werent for daylight savings time) on June 21; and the longest side, the upper leg, points to the sun at noon on the spring and autumn equinoxes on March 21 and September 23. There are maps imbedded in the pavement of the plaza which illustrate the earth's land and water masses. The plaza also has a reflecting pool, symbolizing the sun, and nine stainless steel spheres, representing the nine planets.

At solar noon on the day of summer solstice, Solar Rotary's shadow caster casts a circle of light around the central seat. On five specific days of the year, at times specific for each day, Solar Rotary casts its circle of light around plaques placed in the ground plane of the plaza that mark historic events for the State of Florida and the city of

Public Sun Instruments and Art

In a collaborative project with artist James Turrell, our team, working with astronomer Dick Walker (who, unfortunately, did not live to see the completion of this project), designed a skylight which would admit a spot of light into the building for a specified period each day of the year (from 11A.M. to 1 P.M.), and modeled the "analemma," or path that this spot would strike on the curved brick wall pictured at noon each day.

A Monumental Sun Pointer

The large arrow on this remarkable new sundial in Amersfoort, the Netherlands, always points to the Sun, even at night. According to artists Jurgen Bey and Jan Konings, it is probably the only instrument of its kind in the world. The short lower part of the pole is parallel to the Earth's axis and rotates once per sidereal day (23 hours 56 minutes 4.1 seconds), so that it stays forever fixed with respect to the stars. The long upper part, above the $231 / 2^{\circ}$ bend, is perpendicular to the Earth's orbit (the plane of the ecliptic) and rotates once per year, following the Sun's annual movement around the constellations.

6. Public Sun Instruments and Art

What would be cool?

Eugene - point to sun instead of using sun

Possible Topics

- Other Latitudes
- Rise/Set Times, Twilight
- Celestial Navigation,

Positional Astronomy

- Other Planets www.analemma.com Mars

- Other Systems, e.g. Binary

Summary

- Observing Methods and Examples
- Solar Time
- Daily Movement
- Altitude/Azimuth and Astrolabe
- Finding Direction and Location
- The Analemma
- Sundials
- Sun At Night
- Public Sun Instruments and Art

Projects

1. Sun Sight
2. Noon Mark and Solar Time
3. Shadow Stick
4. Analemma
5. Sundial
6. Public Sun Instrument/Art

Conclusion

softwareunderstanding.com/sun

Equation of Time Components

The Equation of Time

\rightarrow Our Sky

Rise/Set Angles

Rising/setting angle is ($90^{\circ}-$ Latitude) due
east/west - along celestial equator
Angles are smaller the further N/S one goes

[^0]: Point's shadow

